Summary
As one of our Data Science Apprentice’s, we’ll help make sure you get the most out of your time with us by embedding you in some of our key projects for some hands-on learning as you embark on your training on a four-year Data Science apprenticeship at the University of Nottingham.
Wage
Competitive
Training course
Data scientist (integrated degree) (level 6)
Hours
Monday to Friday, 9:00 AM – 5:00 PM, One Day per week on Study Leave.
40 hours a week
Possible start date
Monday 1 September
Duration
4 years
Positions available
1
Work
As an apprentice, you’ll work at a company and get hands-on experience. You’ll gain new skills and work alongside experienced staff.
What you’ll do at work
* Spend time with our data scientists, learning from them and helping to build our current analytical tools.
* Contribute to our data strategy.
* Learn about what Datagum does and contribute to our future growth.
Where you’ll work
Yorke House
Castle Meadow Road
Nottingham
NG2 1AB
Training
An apprenticeship includes regular training with a college or other training organisation. At least 20% of your working hours will be spent training or studying.
College or training organisation
UNIVERSITY OF NOTTINGHAM, THE
Your training course
Data scientist (integrated degree) (level 6)
Equal to degree
Course contents
* Identify and clarify problems an organisation faces, and reformulate them into Data Science problems. Devise solutions and make decisions in context by seeking feedback from stakeholders. Apply scientific methods through experiment design, measurement, hypothesis testing and delivery of results. Collaborate with colleagues to gather requirements.
* Perform data engineering: create and handle datasets for analysis. Use tools and techniques to source, access, explore, profile, pipeline, combine, transform and store data, and apply governance (quality control, security, privacy) to data.
* Identify and use an appropriate range of programming languages and tools for data manipulation, analysis, visualisation, and system integration. Select appropriate data structures and algorithms for the problem. Develop reproducible analysis and robust code, working in accordance with software development standards, including security, accessibility, code quality and version control.
* Use analysis and models to inform and improve organisational outcomes, building models and validating results with statistical testing: perform statistical analysis, correlation vs causation, feature selection and engineering, machine learning, optimisation, and simulations, using the appropriate techniques for the problem.
* Implement data solutions, using relevant software engineering architectures and design patterns. Evaluate Cloud vs. on-premise deployment. Determine the implicit and explicit value of data. Assess value for money and Return on Investment. Scale a system up/out. Evaluate emerging trends and new approaches. Compare the pros and cons of software applications and techniques.
* Find, present, communicate and disseminate outputs effectively and with high impact through creative storytelling, tailoring the message for the audience. Use the best medium for each audience, such as technical writing, reporting and dashboards. Visualise data to tell compelling and actionable narratives. Make recommendations to decision makers to contribute towards the achievement of organisation goals.
* Develop and maintain collaborative relationships at strategic and operational levels, using methods of organisational empathy (human, organisation and technical) and build relationships through active listening and trust development.
* Use project delivery techniques and tools appropriate to their Data Science project and organisation. Plan, organise and manage resources to successfully run a small Data Science project, achieve organisational goals and enable effective change.
Your training plan
* Data scientist (integrated degree) Apprenticeship Standard
Requirements
Essential qualifications
GCSE in:
* English language (grade Level 2 (equivalent 4-9))
* Maths (grade Level 5)
Let the company know about other relevant qualifications and industry experience you have. They can adjust the apprenticeship to reflect what you already know.
Skills
* Communication skills
* IT skills
* Organisation skills
* Analytical skills
* Logical
* Team working